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A Simple Device for Making Constant Density Gradients

HARRY SVENSSON* and SUNE PETTERSSON

DEPARTMENT OF PHYSICAL CHEMISTRY
CHALMERS INSTITUTE OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
GOTHENBURG, SWEDEN

Summary

The possibility of adapting the well-known mixing device shown in Fig. 1
for production of density gradients with retained hydrostatic equilibrium is
investigated. It is shown that a specific form of the unstirred container can
be found that gives a strictly linear density course. Instead of specifically
shaped containers, specific plungers can be used in cylindrical containers.
All pertinent equations are given. The modified arrangement is useful for
falling as well as for rising densities by use of exchangeable plungers.

The communicating duct between the containers has to have a large
bore. With the aid of a V-shaped channel in a stopcock, turnable to a A
orientation, hydrostatic stability can be retained under all circumstances.

In the experimental section it is shown that accurately constant density
gradients are really obtained by using plungers constructed according to the
requirements of the theory.

It is also shown that, under certain conditions, approximately constant
density gradients can be obtained by the use of cylindrical containers with
free cross-sectional areas proportional to the densities of the liquids in
them.

A device according to Fig. 1 has been described by Parr (1) and
is frequently used in chromatographic work for preparation of liquid
gradients. If the density difference between the two liquids is
negligible, and if the liquid flow is slow enough to allow hydrostatic
equilibrium to prevail in each moment, then the concentration in
the effluent obeys

c=co+ (c;i— ¢o) (VIV))' (1)

* Present name: Harry Rilbe.
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FIG. 1. Mixing device according to Parr ().

where ¢, and ¢; are the initial concentrations in the unstirred and
stirred container, respectively; V; the initial total volume; V the
remaining volume; and f the cross-sectional area ratio between
stirred and unstirred container. The ¢ vs. V curve becomes convex
upward if the bigger container has the higher concentration; in the
opposite case it is convex downward. With two equal containers,
the effluent concentration changes linearly with the volume; its
concentration gradient is then constant.

For making density gradients, it is necessary for hydrostatic
reasons to fill the two containers to different heights. Equation (1)
is then, of course, no longer valid. Density gradients have become
extremely important as a stabilizing principle in modern centrifugal
and electrophoretic techniques, and constant density gradients are
often desired. Ayad et al. (2) have recently shown that constant
gradients can be achieved by forcibly guiding the effluent flow to a
speed twice as large as that between the containers by the use of a
peristaltic pump. The cross sections and the positions of the two
containers are then arbitrary. In this article it will be shown that
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simple modifications in the device in Fig. 1 can be used for making
constant density gradients without auxiliary machinery.

THEORETICAL
Basic Equations

Hydrostatic Balance. The hydrostatic law gives

XPg = Yp (2)
which can also be written in two alternative forms:
po(x—y) =y Ap (3)
px—y)=xAp (4)
The differential form of (2) is
podx=ydp+pdy (5)

Volume Balance. The remaining volume is the sum of the volumes
in each container, the duct between them being disregarded:

A f dx/f+ Ay = V (6)

Volume changes on mixing are very small and will be disregarded
here. The delivered volume will consequently be equal to the
initial minus the remaining volume, V; — V. After differentiation,
Eq. (6) takes the form

Adx+Afdy=fdv (7)
Mass Balance. The total mass in the mixer is
po [ (Alf) dx+Ayp=m
Differentiation gives
po(Alf) dx+ Ay dp + Ap dy=dm

The change in mass is, however, identical with p dV, which gives
the following mass balance equation:

Apodx+ fAy dp + fAp dy = fp dV
With the aid of Eq. (7), dV and dy can be eliminated, and one gets
fydp=Apdx (8)
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Level Difference. If the differential equations (5), (7), and (8) are
arranged in a matrix as follows:

podx—pdy—ydp=0 (5)
Adx+Afdy=fdv (7)
Apdx—fydp=0 (8)

it is realized that they can be solved for dx, dy, and dp, which are
thus obtained in terms of the independent differential dV:

__fpdv _
R TREESY ©
_ Jpo—Ap
W= ZpF+ D (10)
p Ap dV

P= Apy(F+ D) (1)

Subtraction of (10) from (9) gives the differential of the level
difference:

d(x—y) =£—;:0dV (12)

Whereas Eqs. (9)-(11) contain four variables each, Eq. (12) has only
three variables: (x — y), Ap, and V. Moreover, if Ap is specified as a
certain desired function of V, the number of variables reduces to
two, and the equation can be integrated to yield the level differ-
ence as a function of V.

Shape of the Unstirred Container that Gives a
Constant Density Gradient

Conditions for a Constant Density Gradient. When a total density
difference of (Ap); and a total volume of V, are available, then a con-
stant density gradient must have the value

ilﬂ _ (Ap): @ —
T o= ), (13)

which is easily integrated to give
p=po+ (Ap) (14)
Ap = (Ap)w (15)
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Level Difference. The density difference from (15) can now be
inserted into (12), which gives

d(x—1y) =%pf)ivdu (16)
Integrations yields
— Vi(Ap); 2
_—2Ap0 v a7)

The level difference is consequently a parabolic function of the
remaining volume in the mixer.

Individual Heights of the Liquid Columns. After having found the
explicit solution of one variable in terms of the independent vari-
able v, it is easy to obtain all other variables as functions of v. Thus
it is now possible to introduce (x — y) from (17) and Ap from (15)
into Eq. (3) in order to get y as a function of v:

_ V{U _ l

Y=24 24

Since Ay is the volume of the liquid in this container, it follows that
this volume is always half the remaining volume. During the whole

operation, consequently, the two containers keep exactly the same
volume of liquid. Differentiation of (18) gives

Ady=dv/2 (19)

which means that the stirred container always delivers exactly half
of the effluent volume. This is the principle upon which Ayad et al.
(2) based their device and could be regarded as self-evident for
constant gradients. This theory could thus have been started with
Eq. (18) in conjunction with Eqs. (2) and (7) and could so have been
a lot simpler. However, the general theory presented here can be
extended to any kind of density gradient by inserting nonlinear
density courses into Eq. (12).

To find the height of liquid in the unstirred container, one may
add Egs. (17) and (18), with the result

(18)

Vi
= Ao [pov + (Ap) 0] (20)
Differentiation gives
dx _ Vi
B =2y, [+ 200)0] (@)
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Cross-Sectional Area of the Unstirred Container. The parameter f
may be solved from Eq. (8) to give

f= Ap dx _ Ap(dx/dv)
ydp — y(dp/dv)

The two derivatives are taken from Egs. (13) and (21). Using in
addition Egs. (15) and (18), one finds for f

(22)

po(f—1) =2(Ap)ww (23)
Solved for f, it can be brought into the form
f=1-2(1—-s)v (24)

The meniscus area A/f is thus a hyperbolic function of the remain-
ing volume.

The surface area parameter f is by definition a positive quantity;
negative values or zero cannot be allowed. This leads to the fol-
lowing inequality:

1-2(1—s)v>0 (25)

that has to be satisfied for all values of v. For v =1, one conse-
quently gets the restriction

s > 4% (26)

which may be expressed in words by saying that the unstirred
liquid cannot be allowed to be twice as dense as the initial stirred
liquid.

The value of f at the initial level x; is obtained by putting v =1
in Eq. (24):

fi=f(x) =25 —1 (27)

The free meniscus area in the unstirred container is thus positive
and finite subject to condition (26), but for s; = 4, it rises to infinity.

The unstirred container cannot be constructed on the basis of
Egs. (23) and (24). To make it, one has to know f as a function of x.
Consequently what remains to be done is to eliminate v between
Egs. (20) and (23), which gives

_Vi(fz—l) _tho(fz_l)
*TBA(s,—1)  8A(Ap)

(28)

With the substitution
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__Vp
‘= BAlsp), (29

where a is a distance that can be calculated from given experi-
mental conditions, Eq. (28) can be solved for f to give

f=Vl+xia (30)

This equation makes it possible to calculate various shapes of and
to construct containers for the unstirred liquid which are to be used
in the device in Fig. 1 in order to get constant density gradients.
It should be noticed that f = 1 for x = 0; that is, the two containers
must have the same free base area. It should further be noted that
a changes sign with (Ap);. Consequently a is a positive distance for
falling and a negative distance for rising efluent densities. A falling
density is thus connected with an f function rising from f = 1 at the
bottom of the container; for a rising density f decreases from a value
f=1 at the bottom.

The distance a can be given various forms other than Eq. (29).
With use of s;, the initial density ratio between stirred and un-
stirred liquid, a can be written

\Z
¢ = BAls—1) (31)
Since V; = 2Ay; by virtue of Eq. (18), one also has
_ Y;
a= 4———(& 1) (32)

which is the simplest possible expression for a. According to this
equation, a is identical with the initial height y; for s;= 1.25 and
with —y; for s, = 0.75. Elimination of y, in favor of x; by way of Eq.
(2) for initial conditions, leads to

- Xy
a= 481(31 - 1)

The function a(s;) is depicted in Fig. 2. In this graph the field to
the right of s; = 1 represents decreasing densities and the field be-
tween s; = 1 and s; = O represents increasing densities, whereas the
field to the left of s; = 0 lacks physical meaning since all densities
and density ratios are positive.

On passing from large values of s; (in experimental practice at
ordinary temperatures and pressures, s; cannot possibly exceed 5)

(33)
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FIG. 2. The distance a defined by Eq. (29) as a function of the density ratio

s; for ;=5 cm [Eq. (33)]. The field to the left of s, = 0 lacks physical mean-

ing. The field between s, = 0 and s; = } is forbidden according to condition
(26).

down to s; = 1, the graph shows that a increases from rather small
values to the positive infinity for s; = 1, that is, equal densities. At
this point a shifts from positive to negative infinity, and as s; de-
creases from unity, the negative a rises to a maximum: —x; for s; = 3.
The field between 0 and —x; is inaccessible to g, which is also evi-
dent from Eq. (30). The field to the left of s, = % is not allowed in
view of restriction (26). If the latter were overlooked, Fig. 2 would
teach that every negative a value, that is, any specific container
made for a rising density, would suit two different density ratios
equally well, which is incomprehensible.

Versatility. Equation (30) together with the definition of f specifies
the shape of the container without stirrer in two respects: the area
at the base and the way in which it increases or decreases with
height. Other properties, such as total volume (total height) and
form of horizontal sections, are open to free choice. If rectangular
cross sections are chosen, one side of the rectangle may be constant
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and the other variable as 1/f; alternatively, both sides can be made
to vary as 1/f'2. A certain preference should be given to circular
cross sections because of the possibility of turning; the radius then
has to vary as 1/f'2

The shape of the function f(x) is exclusively determined by the
value of the distance a, which is connected with the total volume,
the base area, the initial heights of the menisci, and the two initial
densities as described by Egs. (29), (31), (32), and (33). On con-
sideration of the fact that volumes between 5 and 1000 ml may be
of interest in chemical laboratories in connection with density
gradients, and that liquid densities ranging from 0.692 (isooctane)
to 3.325 g/ml (methylene iodide) are available at room temperature,
it appears necessary to have access to a two-dimensional multitude
of specific containers for various volumes and various a values in
order to comply with all possible requirements.

This complexity is, however, grossly exaggerated. Only compara-
tively small density intervals have frequent application in experi-
mental practice. Thus in general biochemists have only use of the
density range between 1.00 and 1.20 g/ml, whereas earth scientists,
wherever on the density scale they are operating, have to use den-
sity intervals of the same order of magnitude in order to obtain
sufficiently accurate density values of particles or in order to
achieve satisfactory separations of such particles. If density gra-
dients comprising greater intervals are occasionally desired, they
can be prepared in a nonlinear fashion by use of the unmodified
arrangement in Fig. 1, as will be described later in this article.
Consequently the two-dimensional multitude of containers first
anticipated reduces to two one-dimensional multitudes adapted
to various volumes but to only two a values, one positive for falling
and one negative for rising densities. People who can standardize
their work to one volume would thus be satisfied with only two
containers of specifically programmed shape.

It should be noted that only the density ratio enters into Egs.
(31)—(33). One and the same specific container can thus be used for
an unlimited number of different density intervals characterized
by a constant density ratio. For instance, in powder analyses with
the aid of isooctane as the least dense and methylene iodide as
the densest liquid available, constant density gradients within
density intervals such as 0.700-0.875, 0.800-1.000, 0.900-1.125,
1.000-1.250, etc., can be produced by using the same specific con-
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tainer with @ = y; since the density ratio over all intervals is 1.25.
All these gradients will also be confined to the same volume and
can thus be fed into a series of equal columns.

Equation (29) further shows that a setup designed for certain a
and A values will still function if V; and (Ap); are changed in direct
proportion and if V; and p, are changed in reciprocal proportion.

Numerical Caleulation. For a decreasing density the distance a is
positive, and the numerical calculation of f is then much facilitated
by introduction of an intermediary variable « defined by

x=a tan’ (34)
which leads to the relation
f=seca (35)

For an increasing density, the distance a is negative, and the
intermediary variable B8, defined by

x=—a sin®’ B (36)
is more suitable since it gives the relation
f=cos B (37)

Use of Plungers

In practice it is not feasible to make containers with specifically
programmed cross sections unless large-scale manufacture is con-
sidered. It is much more practicable to use cylindrical containers
and to have a stirrer with a constant cross-sectional area in one con-
tainer and a plunger with a variable cross section in the other. The
cross-sectional area P(x) of the plunger then has to satisfy the
equation

C — P(x) = Alf(x) (38)

where C is the constant internal cross-sectional area of the un-
stirred cylinder. The stirred cylinder may, but need not, have the
same internal area. The only thing that matters is the free base
area, which must be the same in the two cylinders.

A plunger for a falling density thickens; a plunger for a rising
density narrows off from the bottom upward. If they are to be used
alternatively in the same setup, they must have the same base area,
given by Eq. (38) with f(0)= 1.
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A plunger for a rising density disappears at a certain level. The
f value for which this occurs is obtained by putting P = 0 in Eq.
(38). Since the arrangement can be used up to, but not above, this
level, it may be identified with the initial level x;. In this case one
obtains

f(x) = AIC (39)
Comparison with Eq. (27) then leads to
A=C(2s5—1) (40)

The size of the unstirred cylinder is thus not arbitrary if one wants
to use the apex of the plunger as an index for the proper volume to
be used. This is not necessary, however. One can use a larger
cylinder and a larger plunger and add a measured volume of liquid
not reaching the apex of the plunger.

A plunger can be made either with a rectangular or, by turning,
with a circular cross section. In the former case one dimension of
the rectangle may be constant and the other proportional to (C —
Alf) in order to satisfy Eq. (38). Such a plunger is wedge-shaped
and is shown in Fig. 3(a). A turned plunger with the radius b(x)
must, of course, obey the equation wb? = P. Such a plunger is shown
in Fig. 3(b).

(a) S

FiG. 3. Plungers for rising densities, to be inserted into the unstirred con-
tainer. (a) Plunger with rectangular cross section, dimension perpendicular
to the paper constant; (b) turned plunger.
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As a check on the calculation, one may derive the volume in
the unstirred container by integration from the bottom to the apex
of the plunger, making use of Egs. (39) and (40). For the integration,
one needs the differentiated form of Eq. (30):

2af df = dx (41)

The integration then proceeds as follows:

x * AlC
f (Alf) dx=A f dx/f = 2aA f df = 20A(A/C — 1)
0 [1] 1

=20A(2s;—1—1)=4aA(s;—1)=4A(s,— 1) 4_(8y1—1)
i

=Ay;= V2

The integrated volume comes out as half the initial volume, as it

should.

Density Gradients Obtainable by Mixers with Constant Cross Sections

In many applications of density gradients, small deviations from
a linear density course may be tolerated. It is therefore of great
interest to know how large are the deviations from linearity that
result when both containers have constant cross-sectional areas.
Mathematically, this corresponds to treating the parameter f as a
constant, whereas Eqs. (13)-(15) and all equations derived from
them do not apply. The goal will now be to calculate the density
course and its gradient.

Elimination of the density differential between Egs. (5) and (8)
gives

(fpo — Ap) dx=fp dy (42)

If p and Ap are taken from Egs. (2) and (3), one gets a differential
equation containing only x and y as variables:

%—f};ly=—l (43)

It is readily solvable by standard methods with the aid of the in-
tegration factor x~¢*?/, The solution is found to be

=y _ o)y (44)

x 4]
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With the aid of Eq. (4), this gives the relation:

o _ (8p),
P ]

This equation describes the density course explicitly as a function
of x, the height of liquid in the unstirred container; x; is, as before,
the initial height.

Equal Cross Sections, Unequal Volumes. When the two cross-sec-
tional areas are equal, f becomes unity, and the volume of the less
dense liquid necessarily becomes larger than that of the denser
liquid. The resulting density course must then run entirely below
the rectilinear course from p; to p,.

To proceed further from Eq. (45), expressions for x and x; in terms
of V and V; are needed. For f=1, Eq. (6) reads

(x/x)* (45)

Ax+Ay=V (46)
and y can be eliminated by use of Eq. (2). One obtains
___Vp
*TAG ) “D
and thus
Vip;
=t 47
“ Ao + po) (472)

Insertion of these equations into Eq. (45) with f = 1 gives an equa-
tion with only p and V as variables. After some manipulation, this
equation can be brought into the form

r=V1l—(1—#)v (48)
Differentiation gives
dr _r—1
dv  2r (49)
ds _1—1F s(sf—1)
dv” 2@ 2% (492)

In the frequently occurring practice of using sucrose for the pro-
duction of density gradients in water solutions, p; may be chosen
= 1.2 g/em®, whereas p, is close to 1 g/em?® (decreasing density).
This leads to the following density course:

p = (1—0.3056v)"12 (50)
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1.0 - ——

0 04 08 %

FIG. 4. Effluent density and its gradient obtained with the unmoedified mixer
in Fig. 1 with equal free meniscus areas and unequal initial volumes.

and to the density gradient:
dp

5=
Functions (50) and (51) are illustrated in Fig. 4.

Unequal Cross Sections, Equal Volumes. If the two containers have
cross-sectional areas proportional to the densities of the initial
liquids in them, these liquids will get the same volume at hydro-
static equilibrium. In practice this is achieved by using equal
cylindrical containers in combination with suitable plungers, one
for each density ratio. Quantitatively, the relations valid for this
kind of mixer are given by

0.1528p (51)

Joi=x (52)
fpo=p (53)
Vi =2Afy, = 2Ax; (54)

f=8=1n (55)

Equation (45) will be used again, and expressions for x and x; in
terms of v are required. Equation (6) now takes the form

Ax+ Afy=fV (56)
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and y can be eliminated with the aid of Eq. (2), with the result

__ foV
= Alp + fpo) (56a)
and thus
feiVi (56b)

T Alpi+ foo)
Division gives

x _ p(p;i + fpo)
x  pilp +fpo) (57)
If this is inserted into Eq. (45), the latter can be solved for v:
_ pilp + fpo) [ pil\p ]f
= ploi T foo) L (Bp); (38)

With the aid of Egs. (53) and (55), this equation can be much sim-
plified in a variety of ways. The neatest way of presenting the solu-

tion seems to be
r+r[l1—1r]
o= [1=7) =)

%
L

ja3

1.2 02

1! o1

1.0

0 04 T
FIG. 5. Efluent density and its gradient obtained with the unmodified mixer
in Fig. 1 with unequal free meniscus areas and equal initial volumes.
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Differentiation gives

ds 213 (1 — )’
T TFn) Pd=n" (60)

For the specific case of a sucrose density gradient running from 1.2
to 1.0 g/cm?, the last two equations assume the forms

v=0.8586 (6r+ 5)(1 —r)!? (61)
ds 0.08823
&= A= (62)

Functions (61) and (62) are illustrated in Fig. 5.

EXPERIMENTAL

Apparatus

The mixer shown in Fig. 6 comprises two cylindrical containers
(a and b), one with a stirrer (c) and exit tube (d) and the other with
a plunger (e) thickening upward for falling densities or a plunger (f)
narrowing upward for rising densities. The cylinders are mounted
on a base plate (g) on top of a chassis (h) containing a synchronous
motor (i) running at a speed of 375 rpm and driving the stirrer by
way of a jaw clutch and an O-ring-sealed slide bearing (j). The
cylinders communicate through a stopcock (k) with a V-shaped
duct (1).

Cylinders, plungers, and baseplate were made of Perspex and
the stopcock of Teflon. The plungers were calculated for a values
of 9.82 and —~11.69 cm for falling and rising densities, respectively,
corresponding to a total volume of 110 cm?, a base area of 7.386 cm?,
and densities of 1.1874 and 0.9982 g/cm?®. They were turned on the
lathe with a tolerance of 0.1 mm. The construction of the stirrer
as a screw with a large pitch secures a constant cross-sectional area.

Whereas the bore of the exit tube is of capillary dimension, that
of the communicating duct is much larger. This is necessary in
order to secure a sufficiently low resistance to flow even when the
duct is filled with the highly viscous, concentrated sucrose solution,
since the theory assumes hydrostatic equilibrium to be reached
instantaneously. We have chosen a bore of 3 mm for this duct,
which in addition is rather short. A large duct cannot be allowed to
run horizontally between the containers because it would result
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FIG. 6. Design of modified mixer with cylindrical containers and exchange-
able plungers.

A\

RROPEL

T

in an appreciable exchange of solutions between them. The denser
solution would flow along the bottom and the less dense one along
the ceiling of the duct until a new equilibrium was established.
This undesired exchange of liquid is prevented by the V-shaped
duct in the stopcock, being kept in the V position for increasing and
in the A position for decreasing densities. Hydrostatic stability
then prevails under all circumstances.

Experimental Arrangement and Procedure

The dense solution contained 500 g of sucrose (Mallinckrodt,
St. Louis, Miss., analytical reagent grade), 2.002 mmoles of potas-
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sium chromate (pro analysi), and 1.030 mmoles of alkali per liter,
whereas the less dense solution consisted of pure water.

The exit tube of the mixer was connected to the inlet of a UV light
absorptiometer, model Uvicord 4701 A (LKB-Produkter AB, Stock-
holm-Bromma, Sweden), and its exit tube was attached to the suc-
tion side of a low-speed peristaltic pump driven by a synchronous
motor. The photoelectric signal from the absorptiometer was fed to
a potentiometric recorder, model Moseley Autograph 7100 A (F. L.
Moseley Co., Pasadena, Calif.). The transmittance values recorded
by the Uvicord were recalculated to absorbance, which was used as
a measure of the concentration of solutes (essentially chromate, but
the high concentration of sucrose also contributed to the absorb-
ance). Since the chromate and sucrose concentrations were neces-
sarily mutually proportional in the effluent, and since the density
increment is proportional to the sucrose concentration, the densi
can in principle be measured by way of the absorbance. The alkali
was added in order to remove any possibility of partial conversion
of chromate to biochromate, but its presence involves an obvious
risk of slow hydrolysis followed by reduction of the chromate.
Storage of a sucrose-chromate solution during 30 days resulted in a
4% decrease in the absorbance. This slow change cannot affect our
experiments, completed in 1 or 2 days.

The experiments to be reported here were done in order to test
the linearity of density courses given by the mixer. A compara-
tively low pumping speed was therefore used: 38.6 ml/hr. An ex-
periment thus lasted for 2 hr and 51 min. Because of the constant
rate of flow, the time axis of the recorder could be recalculated to
volume of effluent liquid, V; — V, or to remaining volume, V.

Preparation for Rising Densities. With the plunger narrowing off
upward in place in the unstirred cylinder and with the stopcock in
the V position, about 5 ml of the dense solution was poured into
the mixer. It was then allowed to drain off by keeping the exit tube
(d) open. The stopcock, still filled with dense solution, was then
closed (position < or >). The dense solution remaining in the un-
stirred cylinder by the action of capillary forces was not removed,
whereas the portion left in the stirred cylinder was rinsed away by
repeated washings with less dense solution (distilled water in our
experiments). After having completed the capillary tube connec-
tions between mixer, Uvicord cell, and pump, at least 5 ml of the
less dense solution was introduced into the stirred cylinder. By
starting pump and recorder, the capillary tubes became filled with
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less dense solution, and the recorder started to register its constant
light transmittance. The machinery was stopped exactly at the
moment where the exit tube (d) was about to take in air. The small
quantity of solution kept by capillary forces on the bottom of the
cylinder was not removed.

Fifty-five milliliters of dense solution was now introduced into
the unstirred cylinder, and the same volume of less dense solution
was poured into the stirred one. On opening the stopcock to the
V position, the two liquid columns were found to be in hydrostatic
equilibrium and kept their levels unchanged. The whole machinery
with stirrer, pump, and recorder was finally started and was allowed
to continue until the exit tube took in air.

Preparation for Falling Densities. When a decreasing density was
desired, the two solutions were exchanged in every step of the
above procedural description. In addition, the other type of plunger,
thickening upward, was applied in the unstirred cylinder, and the
stopcock, prefilled with less dense solution, was turned to the
A position during operation (but to the V position during filling).

Analysis of the Linearity of the Density Course

Experiments conducted as described above revealed a definitely
nonlinear course of the absorbance. We then carried out extinction
measurements in a Beckman spectrophotometer on a dilution series
of our sucrose-chromate solution at 253.7 nm, the wavelength of the
resonance line of the mercury lamp in the Uvicord. The solution
was found to obey Lambert-Beer’s law accurately and thus cannot
be blamed for the failure of getting a constant gradient. If the mixer
really delivers linear concentration courses, the nonlinear behavior
of the absorbance must evidently be due to some systematic error
in the recording system.

The Uvicord was then calibrated with the same dilution series of
the dense sucrose-chromate solution. Due to its high viscosity,
pipets were not trusted to give a good enough accuracy in the dilu-
tions. Consequently the desired volumes of the dense solution
were recalculated to weights by use of its known density, and the
dilutions were made with the aid of an analytical balance and volu-
metric flasks. Each dilution was introduced into the Uvicord cell,
and the recorder was allowed to draw a line for its transmission,
which was subsequently recalculated to absorbance. This calibra-
tion gave the primary data presented in Table 1, the first two
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TABLE 1

Calibration of the Uvicord with a Dilution Series of the Stock Solution of
Sucrose and Potassium Chromate

E
- 1000AE
c Obs. Calc. 0.8459 Difference
0.0000 0.0009 0.0012 ~0.4 0.0528
0.0540 0.0516
0.2002 0.1073 0.1056 2.0
0.0504
0.1560 0.0491
0.4004 0.2041 0.2051 —-1.2 :
0.0480
0.2531 0.0469
0.6006 0.2984 0.3000 -1.9 ’
0.0457
0.3457 0.0446
0.8008 0.3893 0.3903 -1.2 -
0.0436
0.4339 0.0424
1.0010 0.4776 0.4763 1.5 :
0.0414
0.5177 0.0404
1.2012 - 0.5607 0.5581 3.1 ’
0.0394
0.5975 0.0383
1.4014 0.6364 0.6358 0.7 :
0.0373
0.6731 0.0364
1.6016 0.7077 0.7095 —-2.1 :
0.0355
0.7450 0.0345
1.8018 0.7773 0.7795 —2.6 :
0.0336
0.8131 0.0328
2.0020 0.8477 0.8459 2.1 :

columns. It is easily seen that the extinction E is a nonlinear func-
tion of the concentration.

Since the concentrations in the dilution series formed an arith-
metic series, the abbreviated least-squares treatment described by
Svensson (3) could be applied in order to adapt a third-order
polynomial to the E vs. ¢ data. The best-fitting polynomial was
found to be

E =0.001244 + 0.533536¢ — 0.062001¢2 + 0.003116¢3 (63)

The E values calculated from this polynomial are given in the third
column. The deviations between observed and calculated extinc-
tions in relation to the maximum extinction are given in the fourth
column. The mean deviation amounts to 0.2%. The fifth column
contains differences facilitating calculation of concentrations from
observed extinctions by linear interpolation.

The nonlinear relationsship between observed extinction and
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concentration, as described by Eq. (63), is due to the insufficient
monochromaticity of the Uvicord lamp. According to the manual of
the Uvicord, the mercury lines at 312.6-313.2 nm have an intensity
of 8-10% of that of the resonance line at 253.7 nm. In addition, the
lamp emits light at 296.7 and 334.1 nm with intensities of 2 and 1%,
respectively, of the resonance line intensity. Unfortunately, chro-
mate has an absorption minimum close to the ghost lines at 313 nm,
which enhances the deviations from Lambert-Beer’s law. Kortiim
(4) has given a formula for correcting extinctions obtained in in-
sufficiently monochromatic light. Insertion of available data for the
emission spectrum of the lamp and for the absorption spectrum of
chromate into this formula reveals that the deviations in question
can be fully accounted for by the presence of the ghost lines at
313 nm. For concentration measurements by way of absorbance,
however, direct calibration as shown in Table 1 is much to be
preferred. According to Wegstedt (5), the ghost lines can be elimi-
nated by use of an extra filter containing CS, in ethanol. Our instru-
ment lacked this facility.

In a test run with a rising density, the primary data given in the
first two columns of Table 2 were obtained. The observed extinction
values in the second column were converted to concentrations by
linear interpolation in Table 1, and these concentrations are pre-
sented in the third column of Table 2. They should be a linear
function of the effluent volume. To test that, a least-squares treat-
ment was applied to the data in the first and third columns. The
best-fitting straight line was found to be

¢ =-—0.002315 + 0.018382(V; — V) (64)

The concentrations calculated from this equation are given in the
fourth column of Table 2, and the relative deviations between
observed and calculated concentrations are given in the last
column. Except the last reading, which was excluded from the least-
squares treatment, the deviations are smaller than 0.6%, the mean
deviation being 0.34%.

Before a similar test run with a decreasing density could be done,
another stock solution had to be prepared, the Uvicord lamp had to
be exchanged, and the peristaltic pump had to be fitted with a new
rubber hose. It was then necessary to make a new calibration with a
dilution series of the sucrose-chromate solution as described
before. This gave

E =—0.004084 + 0.555505¢ — 0.066611¢? + 0.003116¢*  (65)
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with a mean deviation of 0.37%. The test run with a falling density
gave the primary data given in the first two columns in Table 3. The
concentrations corresponding to the observed extinction values
were calculated by using Eq. (65) and have been introduced into
the third column. They should be rectilinear with the effluent
volume. To test that, the following straight line was calculated by a
least-squares treatment of the data in the first and third columns:

¢ =2.024831 — 0.017793(V; — V) (66)

Concentrations calculated from this equation are given in the fourth
column, and the relative deviations between observed and thus
calculated concentrations are given in the last column. In this case
the last two readings, which were excluded from the treatment by
least squares, show a 1% deviation, whereas the rest of the con-
centration course shows a mean deviation from linearity of only
0.17%.

TABLE 2

Linearity Analysis on a Rising Density Course

[

1000Ac

V,—V E Interpol. Linear 2.0197
0.00 0.0000 -—0.0022 —0.0023 0.1
4.42 0.0458 0.0845 0.0789 2.8
11.77 0.1107 0.2103 0.2140 —1.7
19.13 0.1772 0.3434 0.3493 —2.9
26.49 0.2418 0.4767 0.4846 —3.9
33.85 0.3063 0.6144 0.6199 —-2.7
41.20 0.3696 0.7541 0.7550 -0.5
48.56 0.4306 0.8932 0.8903 14
55.92 0.4881 1.0293 1.0256 1.8
63.28 0.5452 1.1691 1.1609 4.1
70.63 0.6003 1.3086 1.2960 6.2
77.99 0.6498 1.4388 1.4313 3.7
85.35 0.6968 1.5663 1.5666 —0.1
92.71 0.7471 1.7075 1.7042 1.6
100.07 0.7878 1.8262 1.8372 —5.4
107.42 0.8327 1.9614 1.9723 —5.4

110.00 0.8416 1.9885 2.0197 —15.4
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TABLE 3
Linearity Analysis on a Falling Density Course

[

1000Ac
Vi—V E Interpol. Linear 2.0092
0.88 0.8665 2.0032 2.0092 —-3.0
9.68 0.8153 1.8502 1.8526 —-1.2
18.48 0.7620 1.6970 1.6960 0.5
27.28 0.7055 1.5422 1.539%4 1.4
36.08 0.6459 1.3854 1.3829 1.2
44.88 0.5834 1.2282 1.2263 0.9
53.68 0.5186 1.0720 1.0697 11
62.48 0.4522 0.9183 0.9131 2.6
71.28 0.3799 0.7581 0.7565 0.8
80.08 0.3054 0.5990 0.6000 —0.5
88.88 0.2269 0.4386 0.4434 —2.6
97.68 0.1481 0.2837 0.2868 —1.5
106.48 0.0545 0.1068 0.1302 —11.6
110.00 0.0218 0.0471 0.0676 -10.1

DISCUSSION

This investigation was initiated after discussions between the
senior author and Dr. O. Vesterberg, Department of Bacteriology,
the Karolinska Institute, Stockholm. In his exploration of the iso-
electric focusing method for proteins in density gradients (6), he
had, by a skillful combination of qualitative arguments and experi-
ments, realized that density gradients obtained from a device
according to Fig. 1 could be much improved by using some sort of
plunger in the less dense solution. He reported considerable ad-
vance with a plunger essentially conical in shape. The senior author
became interested in the problem and decided to deduce the theo-
retical shape which a plunger should have in order to give a con-
stant density gradient. For a turned plunger, it turned out that the
radius has to be a fourth-root function of the height.

The relatively time-consuming turning of plungers with specifi-
cally programmed radii raises the question of the magnitude of the
deviations from linearity that are to be expected when both con-
tainers have constant cross-sectional areas, that is, when no plungers
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or cylindrical plungers are used in cylindrical containers. At hydro-
static equilibrium equal cross sections give rise to a larger volume
of the less dense solution and comparatively severe deviations from
linearity, as shown by Fig. 4. The density gradient obtained varies
as the cube of the density.

On the other hand, unequal cross sections chosen so as to give
equal initial volumes at hydrostatic equilibrium give rise to much
more constant density gradients, as shown by Fig. 5. As a matter of
fact, the deviation from a straight line is everywhere smaller than
1.6% of the total density difference, although the density gradient
goes to infinity toward the end of the flow due to the presence of the
factor (1 —7)"%% in Eq. (62). The numerical data underlying Fig. 5
refer to sucrose solutions in water, density difference 0.2 g/cm?®. For
such solutions the use of equal volumes in unequal cylinders can be
regarded as a practical possibility for making almost constant
density gradients. When greater density intervals are involved, the
arrangement gives density courses that are far from linear.

Experimental tests of the theory have been limited to plungers
of the theoretical shape for constant gradients. Disregarding the
1-1.5% deviations that have been encountered at the end of the
flow, the density courses obtained have been found to be so accu-
rately linear that graphs would completely fail to show any devia-
tions at all. For that reason the deviations from linearity have been
given in the last columns of Tables 2 and 3 as parts in 1000 of the
maximum concentrations. The mean deviations amount to 0.2-
0.3% and fall entirely within the experimental uncertainty.

Surface tension effects have not been included in the theory. The
latter can therefore be expected to lose in accuracy and applicability
when such effects become important. We believe this to be the
case toward the end of the flow when the menisci begin to touch
the bottom of the respective containers. This is probably the reason
for the comparatively large deviations from linearity at the end of
the flow.

Increased surface tension effects are also to be expected in mixers
for very small volumes, e.g., for density gradient runs in small
centrifuge tubes. The use of plungers must probably be abandoned
in mixers for small volumes. One will then have to make containers
of the proper shape or to use unequal cylinders with equal initial
volumes, giving approximately constant density gradients.

There is in general an optimum speed for the stirrer, too low a
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speed causing insufficient mixing and too high a speed giving rise
to a paraboloid deformation of the liquid surface. We have handled
this problem in an entirely empirical way. The relatively thick
stirrer shown in Fig. 6 and used because of its compatibility with
both types of plungers can be run at a rather high speed without
causing any difficulties due to swirling,

Salo and Kouns (7) have described simple equipment for making
constant density gradients in small volumes (5 ml) of liquid. They
paid considerable attention to the design of the intercompartment
duct and preferred to operate with the less dense solution in the
stirred container (rising density), whereby complete hydrostatic
equilibrium within the duct was achieved. Much less interest was
devoted to the hydrostatic balance between chambers, but they
seem to have attained initial hydrostatic equilibrium more or less
fortuitously, by the volume occupied by the stirrer and by the added
volume used to compensate for the volume of the exit tube. In this
way their procedure becomes closely related to our suggestion of
using equal volumes of liquid in unequal cylinders.
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List of Symbols

A constant free cross-sectional area in the stirred
container
Alf  the variable free cross-sectional area in the other
container
C  constant internal cross-sectional area of unstirred
container with plunger
i (subscript) means “initial”
P variable cross-sectional area of plunger in the un-
stirred container
r=1/s = polp density ratio between unstirred and stirred liquid
= reciprocal specific gravity as defined below
s=plp,  density ratio between stirred and unstirred lig-
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uid = specific gravity of effluent liquid with the
unstirred liquid as the standard

volume remaining in the mixer

reduced volume, dimensionless, running from
unity to zero

height of liquid column in the unstirred container
height of liquid column in the stirred container
variable density in the stirred container = efflu-
ent density

constant density in the unstirred container
density difference between stirred and unstirred
container

REFERENCES

. C. W. Parr, Biochem. J., 45, xxvii (1954).

. S. R. Ayad, R. W. Bonsall, and S. Hunt, Sci. Tools, 14, 40 (1967).

. H. Svensson, Sci. Tools, 6, 1 (1959).

. G. Kortum, Kolorimetrie, Photometrie und Spektrometrie, Dritte Auflage,

Springer, Berlin, 1955, p. 44.

. L. Wegstedt, Sci. Tools, 8, 5 (1961).
. O. Vesterberg, Acta Chem. Scand., 21, 206 (1967).
. 'T. Salo and D. M. Kouns, Anal. Biochem., 13, 74 (1965).

Received by editor March 4, 1968
Submitted for publication March 20, 1968



