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A Simple Device for Making Constant Density Gradients 

HARRY SVENSSONO and SUNE PETTERSSON 
DEPARTMENT OF PHYSICAL CHEMISTRY 
CHALMEHS INSTITUTE OF TECHNOLOGY 
UNIVERSITY OF GOTHENBURG 
GOTHENBURG, SWEDEN 

Summary 

The possibility of adapting the well-known mixing device shown in Fig. 1 
for production of density gradients with retained hydrostatic equilibrium is 
investigated. It is shown that a specific form of the unstirred container can 
be found that gives a strictly linear density course. Instead of specifically 
shaped containers, specific plungers can be used in cylindrical containers. 
All pertinent equations are given. The modified arrangement is useful for 
falling as well as for rising densities by use of exchangeable plungers. 

The communicating duct between the containers has to have a large 
bore. With the aid of a V-shaped channel in a stopcock, turnable to a A 
orientation, hydrostatic stability can be retained under all circumstances. 

In the experimental section it is shown that accurately constant density 
gradients are really obtained by using plungers constructed according to the 
requirements of the theory. 

It is also shown that, under certain conditions, approximately constant 
density gradients can be obtained by the use of cylindrical containers with 
free cross-sectional areas proportional to the densities of the liquids in 
them. 

A device according to Fig. 1 has been described by Parr ( 1 )  and 
is frequently used in chromatographic work for preparation of liquid 
gradients. If the density difference between the two liquids is 
negligible, and if the liquid flow is slow enough to allow hydrostatic 
equilibrium to prevail in each moment, then the concentration in 
the effluent obeys 

c = co + (Ci - co) (V/Vi) l’f (1) 
* Present name: Harry Rilbe. 
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210 H. SVENSSON AND S. PETTERSSON 

FIG. 1. Mixing device according to Pan (1). 

where c,, and ci are the initial concentrations in the unstirred and 
stirred container, respectively; Vi the initial total volume; V the 
remaining volume; and f the cross-sectional area ratio between 
stirred and unstirred container. The c vs. V curve becomes convex 
upward if the bigger container has the higher concentration; in the 
opposite case it is convex downward. With two equal containers, 
the effluent concentration changes linearly with the volume; its 
concentration gradient is then constant. 

For making density gradients, it is necessary for hydrostatic 
reasons to fill the two containers to different heights. Equation (1) 
is then, of course, no longer valid. Density gradients have become 
extremely important as a stabilizing principle in modern centrifugal 
and electrophoretic techniques, and constant density gradients are 
often desired. Ayad et al. (2) have recently shown that constant 
gradients can be achieved by forcibly guiding the effluent flow to a 
speed twice as large as that between the containers by the use of a 
peristaltic pump. The cross sections and the positions of the two 
containers are then arbitrary. In this article it will be shown that 
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CONSTANT DENSITY GRADIENTS 21 1 

simple modifications in the device in Fig. 1 can be used for making 
constant density gradients without auxiliary machinery. 

THEORETICAL 

Basic Equations 

Hydrostatic Balance. The hydrostatic law gives 

XPO = YP (2) 
which can also be written in two alternative forms: 

Po(X - Y )  = Y AP 
P ( x - Y Y ) = x A P  

The differential form of (2) is 

(3) 
(4) 

PO dx = Y d~ + P dy ( 5 )  
Volume Balance. The remaining volume is the sum of the volumes 

in each container, the duct between them being disregarded: 

A dxlf + Ay = V 

VoIume changes on mixing are very small and will be disregarded 
here. The delivered volume will consequently be equal to the 
initial minus the remaining volume, V, - V. After differentiation, 
Eq. (6) takes the form 

A dx+Af dy=:f  dV (7) 
Mass Balance. The total mass in the mixer is 

PO S (Alf) d x + A ~ ~ = m  

Differentiation gives 
po(A/f) dx + Ay dp + Ap dy = dm 

The change in mass is, however, identical with p dV, which gives 
the following mass balance equation: 

Ap, dx + fAy dp + fAp dy = fp dV 

With the aid of Eq. (7), dV and dy can be eliminated, and one gets 

(8) fy dp = Ap dx 
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21 2 H. SVENSSON A N D  S. PETTERSSON 

level Difference. If the differential equations (S) ,  (7), and (8) are 
arranged in a matrix as follows: 

po d x - p  d y - y  dp=O ( 5 )  

(7) 

(8) 

A d x + A f  d y =  f dV 

Ap  dx - f y  d p =  0 

it is realized that they can be solved for dx, dy ,  and dp,  which are 
thus obtained in terms of the independent differential dv: 

Subtraction of (10) from (9) gives the differential of the level 
difference: 

AP d ( x -  y )  =-dv 
APO 

Whereas Eqs. (9)-(11) contain four variables each, Eq. (12) has only 
three variables: ( x  - y), A p ,  and V .  Moreover, if Ap is specified as a 
certain desired function of V ,  the number of variables reduces to 
two, and the equation can be integrated to yield the level differ- 
ence as a function of V .  

Shape of the Unstirred Container that Gives a 
Constant Density Gradient 

Conditions for a Constant Density Gradient. When a total density 
difference of (Ap)* and a total volume of V ,  are available, then a con- 
stant density gradient must have the value 

which is easily integrated to give 
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CONSTANT DENSITY GRADIENTS 213 

level Difference. The density difference from (15) can now be 
inserted into (12), which gives 

Integrations yields 

The level difference is consequently a parabolic function of the 
remaining volume in the mixer. 

Individual Heights of the liquid Columns. After having found the 
explicit solution of one variable in terms of the independent vari- 
able o, it is easy to obtain all other variables as functions of 2). Thus 
it is now possible to introduce (x  - y) from (17) and Ap from (15) 
into Eq. (3) in order to get y as a function of o: 

vio v 
y = 2 A = 2 A  

Since Ay is the volume of the liquid in this container, it follows that 
this volume is always half the remaining volume. During the whole 
operation, consequently, the two containers keep exactly the same 
volume of liquid. Differentiation of (18) gives 

A dy = dV/2 (19) 
which means that the stirred container always delivers exactly half 
of the effluent volume. This is the principle upon which Ayad et  al. 
(2) based their device and could be regarded as self-evident for 
constant gradients. This theory could thus have been started with 
Eq. (18) in conjunction with Eqs. (2) and (7) and could so have been 
a lot simpler. However, the general theory presented here can be 
extended to any kind of density gradient by inserting nonlinear 
density courses into Eq. (12). 

To find the height of liquid in the unstirred container, one may 
add Eqs. (17) and (18), with the result 

Differentiation gives 
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214 H. SVENSSON A N D  S. PETTERSSON 

Cross-Sectional Area of the Unstirred Container. The parameter f 
may be solved from Eq. (8) to give 

The two derivatives are taken from Eqs. (13) and (21). Using in 
addition Eqs. (15) and (18), one finds for f 

P o w -  1) = 2(AP)P 
Solved for f ,  it can be brought into the form 

f =  1 - 2(1- s*)v (24) 
The meniscus area A/f  is thus a hyperbolic function of the remain- 
ing volume. 

The surface area parameter f is by definition a positive quantity; 
negative values or zero cannot be allowed. This leads to the fol- 
lowing inequality: 

1 - 2(1- q ) v  > 0 (25) 
that has to be satisfied for all values of v.  For v = 1, one conse- 
quently gets the restriction 

si > 3 (26) 
which may be expressed in words by saying that the unstirred 
liquid cannot be allowed to be twice as dense as the initial stirred 
liquid. 

The value off at the initial level xi is obtained by putting u = 1 
in Eq. (24): 

f i = f ( x * )  =2si-1 (27) 
The free meniscus area in the unstirred container is thus positive 
and finite subject to condition (26), but for si = +, it rises to infinity. 

The unstirred container cannot be constructed on the basis of 
Eqs. (23) and (24). To make it, one has to knowfas a function of x. 
Consequently what remains to be done is to eliminate v between 
Eqs. (20) and (23), which gives 

With the substitution 
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CONSTANT DENSITY GRADIENTS 215 

where a is a distance that can be calculated from given experi- 
mental conditions, Eq. (28) can be solved forf to give 

f =  viTY/z (30) 
This equation makes it possible to calculate various shapes of and 
to construct containers for the unstirred liquid which are to be used 
in the device in Fig. 1 in order to get constant density gradients. 
It should be noticed thatf= 1 for x = 0; that is, the two containers 
must have the same free base area. It should further be noted that 
a changes sign with (AP)~.  Consequently a is a positive distance for 
falling and a negative distance for rising effluent densities. A falling 
density is thus connected with anffunction rising fromf= 1 at the 
bottom of the container; for a rising densityfdecreases from a value 
f =  1 at the bottom. 

The distance a can be given various forms other than Eq. (29). 
With use of si, the initial density ratio between stirred and un- 
stirred liquid, a can be written 

Vi 
8A(si - 1) a =  

Since Vi = 2Ayi by virtue of Eq. (18), one also has 

which is the simplest possible expression for a. According to this 
equation, a is identical with the initial height yi for si = 1.25 and 
with -yr for si = 0.75. Elimination of yi in favor of xi by way of Eq. 
(2) for initial conditions, leads to 

The function a(sJ is depicted in Fig. 2. In this graph the field to 
the right of si = 1 represents decreasing densities and the field be- 
tween si = 1 and si = 0 represents increasing densities, whereas the 
field to the left of si = 0 lacks physical meaning since all densities 
and density ratios are positive. 

On passing from large values of si (in experimental practice at 
ordinary temperatures and pressures, si cannot possibly exceed 5) 
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216 H. SVENSSON AND S. PETTERSSON 

FIG. 2. The distance a defined by Eq. (29) as a function of the density ratio 
sl for x1 = 5 cm [Eq. (33)]. The field to the left of s1 = 0 lacks physical mean- 
ing. The field between s1 = 0 and si = 4 is forbidden according to condition 

(26). 

down to si = 1, the graph shows that a increases from rather small 
values to the positive infinity for si = 1, that is, equal densities. At 
this point a shifts from positive to negative infinity, and as si de- 
creases from unity, the negative a rises to a maximum: -x i  for si = t .  
The field between 0 and -x, is inaccessible to a, which is also evi- 
dent from Eq. (30). The field to the left of si = 3 is not allowed in 
view of restriction (26). If the latter were overlooked, Fig. 2 would 
teach that every negative a value, that is, any specific container 
made for a rising density, would suit two different density ratios 
equally well, which is incomprehensible. 

Versatility. Equation (30) together with the definition off specifies 
the shape of the container without stirrer in two respects: the area 
at the base and the way in which it increases or decreases with 
height. Other properties, such as total volume (total height) and 
form of horizontal sections, are open to free choice. If rectangular 
cross sections are chosen, one side of the rectangle may be constant 
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CONSTANT DENSITY GRADIENTS 217 

and the other variable as llf; alternatively, both sides can be made 
to vary as l/f”2. A certain preference should be given to circular 
cross sections because of the possibility of turning; the radius then 
has to vary as l/f1’2. 

The shape of the functionf(x) is exclusiveIy determined by the 
value of the distance a, which is connected with the total volume, 
the base area, the initial heights of the menisci, and the two initial 
densities as described by Eqs. (29), (31), (32), and (33). On con- 
sideration of the fact that volumes between 5 and 1000 ml may be 
of interest in chemical laboratories in connection with density 
gradients, and that liquid densities ranging from 0.692 (isooctane) 
to 3.325 glml (methylene iodide) are available at room temperature, 
it appears necessary to have access to a two-dimensional multitude 
of specific containers for various volumes and various a values in 
order to comply with all possible requirements. 

This complexity is, however, grossly exaggerated. Only compara- 
tively small density intervals have frequent application in experi- 
mental practice. Thus in general biochemists have only use of the 
density range between 1.00 and 1.20 glml, whereas earth scientists, 
wherever on the density scale they are operating, have to use den- 
sity intervals of the same order of magnitude in order to obtain 
sufficiently accurate density values of particles or in order to 
achieve satisfactory separations of such particles. If density gra- 
dients comprising greater intervals are occasionally desired, they 
can be prepared in a nonlinear fashion by use of the unmodified 
arrangement in Fig. 1, as will be described later in this article. 
Consequently the two-dimensional multitude of containers first 
anticipated reduces to two one-dimensional multitudes adapted 
to various volumes but to only two a values, one positive for falling 
and one negative for rising densities. People who can standardize 
their work to one volume would thus be satisfied with only two 
containers of specifically programmed shape. 

It should be noted that only the density ratio enters into Eqs. 
(31)-(33). One and the same specific container can thus be used for 
an unlimited number of different density intervals characterized 
by a constant density ratio. For instance, in powder analyses with 
the aid of isooctane as the least dense and methylene iodide as 
the densest liquid available, constant density gradients within 
density intervals such as 0.700-0.875, 0.800-1.000, 0.900-1.125, 
1.000-1.250, etc., can be produced by using the same specific con- 
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21 8 H. SVENSSON AND S. PETTERSSON 

tainer with a = y, since the density ratio over all intervals is 1.25. 
All these gradients will also be confined to the same volume and 
can thus be fed into a series of equal columns. 

Equation (29) further shows that a setup designed for certain a 
and A values will still function if V, and (Ap), are changed in direct 
proportion and if V, and po are changed in reciprocal proportion. 

Numerical Calculation. For a decreasing density the distance a is 
positive, and the numerical calculation off is then much facilitated 
by introduction of an intermediary variable a defined by 

x = a tan2 (Y (34) 

f = sec a (35) 
For an increasing density, the distance a is negative, and the 

x =-a sin2 p (36) 

f = cos p (37) 

which leads to the relation 

intermediary variable p, defined by 

is more suitable since it gives the relation 

Use of Plungers 

In practice it is not feasible to make containers with specifically 
programmed cross sections unless large-scale manufacture is con- 
sidered. It is much more practicable to use cylindrical containers 
and to have a stirrer with a constant cross-sectional area in one con- 
tainer and a plunger with a variable cross section in the other. The 
cross-sectional area P ( x )  of the plunger then has to satisfy the 
equation 

C - P ( x )  =A/f(x) 

where C is the constant internal cross-sectional area of the un- 
stirred cylinder. The stirred cylinder may, but need not, have the 
same internal area. The only thing that matters is the free base 
area, which must be the same in the two cylinders. 

A plunger for a falling density thickens; a plunger for a rising 
density narrows off from the bottom upward. If they are to be used 
alternatively in the same setup, they must have the same base area, 
given by Eq. (38) with f(0) = 1. 
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CONSTANT DENSITY GRADIENTS 219 

A plunger for a rising density disappears at a certain level. The 
f value for which this occurs is obtained by putting P = 0 in Eq. 
(38). Since the arrangement can be used up to, but not above, this 
level, it may be identified with the initial level xi. In this case one 
obtains 

f ( x J  = A/C (39) 
Comparison with Eq. (27) then leads to 

A = C ( 2 ~ i  - 1)  (40) 
The size of the unstirred cylinder is thus not arbitrary if one wants 
to use the apex of the plunger as an index for the proper volume to 
be used. This is not necessary, however. One can use a larger 
cylinder and a larger plunger and add a measured volume of liquid 
not reaching the apex of the plunger. 

A plunger can be made either with a rectangular or, by turning, 
with a circular cross section. In the former case one dimension of 
the rectangle may be constant and the other proportional to (C - 
A/f) in order to satisfy Eq. (38). Such a plunger is wedge-shaped 
and is shown in Fig. 3(a). A turned plunger with the radius b(x) 
must, of course, obey the equation rrb2 = P. Such a plunger is shown 
in Fig. 3(b). 

(a 1 (b) 
FIG. 3. Plungers for rising densities, to be inserted into the unstirred con- 
tainer. (a) Plunger with rectangular cross section, dimension perpendicular 

to the paper constant; (b) turned plunger. 
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220 H. SVENSSON A N D  S. PETTERSSON 

As a check on the calculation, one may derive the volume in 
the unstirred container by integration from the bottom to the apex 
of the plunger, making use of Eqs. (39) and (40). For the integration, 
one needs the differentiated form of Eq. (30): 

2uf df = dx (41) 
The integration then proceeds as follows: 

1; (Alf) dx = A 1; dx/f = 2uA [" df = 2uA(A/C - 1) 

= A yi = Vi/2 

The integrated volume comes out as half the initial volume, as it 
should. 

Density Gradients Obtainable by Mixers with Constant Cross Sections 

In many applications of density gradients, small deviations from 
a linear density course may be tolerated. It is therefore of great 
interest to know how large are the deviations from linearity that 
result when both containers have constant cross-sectional areas. 
Mathematically, this corresponds to treating the parameter f as a 
constant, whereas Eqs. (13)-(15) and all equations derived from 
them do not apply. The goal will now be to calculate the density 
course and its gradient. 

Elimination of the density differential between Eqs. (5) and (8) 
gives 

(42) 
If p and Ap are taken from Eqs. (2) and (3), one gets a differential 
equation containing only x and y as variables: 

VPO - A P )  dx = f P  dY 

y = - 1  dY f + l  
dx fx (43) 

It is readily solvable by standard methods with the aid of the in- 
tegration factor x-(f+l) / f .  The solution is found to be 
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CONSTANT DENSITY GRADIENTS 22 1 

With the aid of Eq. (4), this gives the relation: 

!!! = 0, (X/Xi)'/f 
P Pi 

(45) 

This equation describes the density course explicitly as a function 
of x, the height of liquid in the unstirred container; xt is, as before, 
the initial height. 

Equal Cross Sections, Unequal Volumes. When the two cross-sec- 
tional areas are equal, f becomes unity, and the volume of the less 
dense liquid necessarily becomes larger than that of the denser 
liquid. The resulting density course must then run entirely below 
the rectilinear course from p i  to p o .  

To proceed further from Eq. (45), expressions for x and xi in terms 
of V and Vi  are needed. For f= 1, Eq. (6) reads 

A x + A y = V  (46) 
and y can be eliminated by use of Eq. (2). One obtains 

VP 
= A(P + P o )  

and thus 
(47) 

Insertion of these equations into Eq. (45) withf= 1 gives an equa- 
tion with only p and V as variables. After some manipulation, this 
equation can be brought into the form 

T =  V l -  ( l - $ ) v  (48) 
Differentiation gives 

In the frequently occurring practice of using sucrose for the pro- 
duction of density gradients in water solutions, p i  may be chosen 
= 1.2 g/cm3, whereas p o  is close to 1 g/cm3 (decreasing density). 
This leads to the following density course: 

p = (1 - 0.3056~)-"~ (50) 
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222 H. SVENSSON AND S. PETTERSSON 

0 0.4 ae V 

FIG. 4. Effluent density and its gradient obtained with the unmodified mixer 
in Fig. 1 with equal free meniscus areas and unequal initial volumes. 

and to the density gradient: 

(51) dP 
du 
- = 0. 1528p3 

Functions (50) and (51) are illustrated in Fig. 4. 
Unequal Cross Sections, Equal Volumes. If the two containers have 

cross-sectional areas proportional to the densities of the initial 
liquids in them, these liquids will get the same volume at hydro- 
static equilibrium. In practice this is achieved by using equal 
cylindrical containers in combination with suitable plungers, one 
for each density ratio. Quantitatively, the relations valid for this 
kind of mixer are given by 

f Y i  = Xt  ( 52 )  

f= $1: = l/q (55) 
Equation (45) will be used again, and expressions for x and 
terms of z, are required. Equation (6) now takes the form 

in 

Ax + Afy =fV (56) 
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CONSTANT DENSITY GRADIENTS 223 

and y can be eliminated with the aid of Eq. (2), with the result 

fPV 
x = A m  

and thus 

Division gives 

If this is inserted into Eq. (45), the latter can be solved for o: 

With the aid of Eqs. (53) and (55), this equation can be much sim- 
plified in a variety of ways. The neatest way of presenting the solu- 
tion seems to be 

FIG. 5. Effluent density and its gradient obtained with the unmodified mixer 
in Fig. 1 with unequal free meniscus areas and equal initial volumes. 
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224 H. SVENSSON AND S. PETTERSSON 

Differentiation gives 

For the specific case of a sucrose density gradient running from 1.2 
to 1.0 g/cm3, the last two equations assume the forms 

v = 0.8586 (6r + 5) ( 1  - r)'.' (61) 

ds 0.08823 - 
d v = r ? ( l - r ) o . 2  

Functions (61) and (62) are illustrated in Fig. 5. 

EXPERIMENTAL 

Apparatus 

The mixer shown in Fig. 6 comprises two cylindrical containers 
(a and b), one with a stirrer (c) and exit tube (d) and the other with 
a plunger (e) thickening upward for falling densities or a plunger (f) 
narrowing upward for rising densities. The cylinders are mounted 
on a base plate (g) on top of a chassis (h) containing a synchronous 
motor (i) running at a speed of 375 rpm and driving the stirrer by 
way of a jaw clutch and an 0-ring-sealed slide bearing 0'). The 
cylinders communicate through a stopcock (k) with a V-shaped 
duct (1). 

Cylinders, plungers, and baseplate were made of Perspex and 
the stopcock of Teflon. The plungers were calculated for a values 
of 9.82 and - 11.69 cm for falling and rising densities, respectively, 
corresponding to a total volume of 110 cm3, a base area of 7.386 cm2, 
and densities of 1.1874 and 0.9982 g/cm3. They were turned on the 
lathe with a tolerance of k O . 1  mm. The construction of the stirrer 
as a screw with a large pitch secures a constant cross-sectional area. 

Whereas the bore of the exit tube is of capillary dimension, that 
of the communicating duct is much larger. This is necessary in 
order to secure a sufficiently low resistance to flow even when the 
duct is filled with the highly viscous, concentrated sucrose solution, 
since the theory assumes hydrostatic equilibrium to be reached 
instantaneously. We have chosen a bore of 3 mm for this duct, 
which in addition is rather short. A large duct cannot be allowed to 
run horizontally between the containers because it would result 
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FIG. 6. Design of modified mixer with cylindrical containers and exchange- 
able plungers. 

in an appreciable exchange of solutions between them. The denser 
solution would flow along the bottom and the less dense one along 
the ceiling of the duct until a new equilibrium was established. 
This undesired exchange of liquid is prevented by the V-shaped 
duct in the stopcock, being kept in the V position for increasing and 
in the A position for decreasing densities. Hydrostatic stability 
then prevails under all circumstances. 

Experimental Arrangement and Procedure 

The dense solution contained 500 g of sucrose (Mallinckrodt, 
St. Louis, Miss., analytical reagent grade), 2.002 mmoles of potas- 
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sium chromate (pro analysi), and 1.030 mmoles of alkali per liter, 
whereas the less dense solution consisted of pure water. 

The exit tube of the mixer was connected to the inlet of a UV light 
absorptiometer, model Uvicord 4701 A (LKB-Produkter AB, Stock- 
holm-Bromma, Sweden), and its exit tube was attached to the suc- 
tion side of a low-speed peristaltic pump driven by a synchronous 
motor. The photoelectric signal from the absorptiometer was fed to 
a potentiometric recorder, model Moseley Autograph 7100 A (F. L. 
Moseley Co., Pasadena, Calif.). The transmittance values recorded 
by the Uvicord were recalculated to absorbance, which was used as 
a measure of the concentration of solutes (essentially chromate, but 
the high concentration of sucrose also contributed to the absorb- 
ance). Since the chromate and sucrose concentrations were neces- 
sarily mutually proportional in the effluent, and since the density 
increment is proportional to the sucrose concentration, the density 
can in principle be measured by way of the absorbance. The alkali 
was added in order to remove any possibility of partial conversion 
of chromate to biochromate, but its presence involves an obvious 
risk of slow hydrolysis followed by reduction of the chromate. 
Storage of a sucrose-chromate solution during 30 days resulted in a 
4% decrease in the absorbance. This slow change cannot affect our 
experiments, completed in 1 or 2 days. 

The experiments to be reported here were done in order to test 
the linearity of density courses given by the mixer. A compara- 
tively low pumping speed was therefore used: 38.6 ml/hr. An ex- 
periment thus lasted for 2 hr and 51 min. Because of the constant 
rate of flow, the time axis of the recorder could be recalculated to 
volume of effluent liquid, V, - V, or to remaining volume, V. 

Preparation for Rising Densities. With the plunger narrowing off 
upward in place in the unstirred cylinder and with the stopcock in 
the V position, about 5 ml of the dense solution was poured into 
the mixer. It was then allowed to drain off by keeping the exit tube 
(d) open. The stopcock, still filled with dense solution, was then 
closed (position < or >). The dense solution remaining in the un- 
stirred cylinder by the action of capillary forces was not removed, 
whereas the portion left in the stirred cylinder was rinsed away by 
repeated washings with less dense solution (distilled water in our 
experiments). After having completed the capillary tube connec- 
tions between mixer, Uvicord cell, and pump, at least 5 ml of the 
less dense solution was introduced into the stirred cylinder. By 
starting pump and recorder, the capillary tubes became filled with 
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less dense solution, and the recorder started to register its constant 
light transmittance. The machinery was stopped exactly at the 
moment where the exit tube (d) was about to take in air. The small 
quantity of solution kept by capillary forces on the bottom of the 
cylinder was not removed. 

Fifty-five milliliters of dense solution was now introduced into 
the unstirred cylinder, and the same volume of less dense solution 
was poured into the stirred one. On opening the stopcock to the 
V position, the two liquid columns were found to be in hydrostatic 
equilibrium and kept their levels unchanged. The whole machinery 
with stirrer, pump, and recorder was finally started and was allowed 
to continue until the exit tube took in air. 

Preparation for Falling Densities. When a decreasing density was 
desired, the two solutions were exchanged in every step of the 
above procedural description. In addition, the other type of plunger, 
thickening upward, was applied in the unstirred cylinder, and the 
stopcock, prefilled with less dense solution, was turned to the 
A position during operation (but to the V position during filling). 

Analysis of the linearity of the Density Course 

Experiments conducted as described above revealed a definitely 
nonlinear course of the absorbance. We then carried out extinction 
measurements in a Beckman spectrophotometer on a dilution series 
of our sucrose-chromate solution at 253.7 nm, the wavelength of the 
resonance line of the mercury lamp in the Uvicord. The solution 
was found to obey Lambert-Beer’s law accurately and thus cannot 
be blamed for the failure of getting a constant gradient. If the mixer 
really delivers linear concentration courses, the nonlinear behavior 
of the absorbance must evidently be due to some systematic error 
in the recording system. 

The Uvicord was then calibrated with the same dilution series of 
the dense sucrose-chromate solution. Due to its high viscosity, 
pipets were not trusted to give a good enough accuracy in the dilu- 
tions. Consequently the desired volumes of the dense solution 
were recalculated to weights by use of its known density, and the 
dilutions were made with the aid of an analytical balance and volu- 
metric flasks. Each dilution was introduced into the Uvicord cell, 
and the recorder was allowed to draw a line for its transmission, 
which was subsequently recalculated to absorbance. This calibra- 
tion gave the primary data presented in Table 1, the first two 
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TABLE 1 

Calibration of the Uvicord with a Dilution Series of the Stock Solution of 
Sucrose and Potassium Chromate 

E 
l000AE 

C Obs. Calc. 0.8459 Difference 

0.0000 

0.2002 

0.4004 

0.6006 

0.8008 

1.0010 

1.2012 

1.4014 

1.6016 

1.8018 

2.0020 

0.0009 

0.1073 

0.2041 

0.2984 

0.3893 

0.4776 

0.5607 

0.6364 

0.7077 

0.7773 

0.8477 

0.0012 
0.0540 
0.1056 
0.1560 
0.2051 
0.2531 
0.3000 
0.3457 
0.3903 
0.4339 
0.4763 
0.5177 
0.5581 
0.5975 
0.6358 
0.6731 
0.7095 
0.7450 
0.7795 
0.8131 
0.8459 

-0.4 

2.0 

-1.2 

-1.9 

-1.2 

1.5 

3.1 

0.7 

-2.1 

-2.6 

2.1 

0.0528 
0.0516 
0.0504 
0.0491 
0,0480 
0.0469 
0.0457 
0.0446 
0.0436 
0.0424 
0.0414 
0.0404 
0.0394 
0.0383 
0.0373 
0.0364 
0.0355 
0.0345 
0.0336 
0.0328 

columns. It is easily seen that the extinction E is a nonlinear func- 
tion of the concentration. 

Since the concentrations in the dilution series formed an arith- 
metic series, the abbreviated least-squares treatment described by 
Svensson (3) could be applied in order to adapt a third-order 
polynomial to the E vs. c data. The best-fitting polynomial was 
found to be 

E = 0.001244 + 0.533536~ - 0.062001~~ + 0.003116~~ (63) 
The E values calculated from this polynomial are given in the third 
column. The deviations between observed and calculated extinc- 
tions in relation to the maximum extinction are given in the fourth 
column. The mean deviation amounts to 0.2%. The fifth column 
contains differences facilitating calculation of concentrations from 
observed extinctions by linear interpolation. 

The nonlinear relationsship between observed extinction and 
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concentration, as described by Eq. (63), is due to the insufficient 
monochromaticity of the Uvicord lamp. According to the manual of 
the Uvicord, the mercury lines at 312.6-313.2 nm have an intensity 
of 8-10% of that of the resonance line at 253.7 nm. In addition, the 
lamp emits light at 296.7 and 334.1 nm with intensities of 2 and 1%, 
respectively, of the resonance line intensity. Unfortunately, chro- 
mate has an absorption minimum close to the ghost lines at 313 nm, 
which enhances the deviations from Lambert-Beer’s law. Kortiim 
(4) has given a formula for correcting extinctions obtained in in- 
sufficiently monochromatic light. Insertion of available data for the 
emission spectrum of the lamp and for the absorption spectrum of 
chromate into this formula reveals that the deviations in question 
can be fully accounted for by the presence of the ghost lines at 
313 nm. For concentration measurements by way of absorbance, 
however, direct calibration as shown in Table 1 is much to be 
preferred. According to Wegstedt (5),  the ghost lines can be elimi- 
nated by use of an extra filter containing CS, in ethanol. Our instru- 
ment lacked this facility. 

In a test run with a rising density, the primary data given in the 
first two columns of Table 2 were obtained. The observed extinction 
values in the second column were converted to concentrations by 
linear interpolation in Table 1, and these concentrations are pre- 
sented in the third column of Table 2. They should be a linear 
function of the effluent volume. To test that, a least-squares treat- 
ment was applied to the data in the first and third columns. The 
best-fitting straight line was found to be 

c =-0.002315 + 0.018382(Vi - V) (64) 
The concentrations calculated from this equation are given in the 
fourth column of Table 2, and the relative deviations between 
observed and calculated concentrations are given in the last 
column. Except the last reading, which was excluded from the least- 
squares treatment, the deviations are smaller than 0.6%, the mean 
deviation being 0.34%. 

Before a similar test run with a decreasing density could be done, 
another stock solution had to be prepared, the Uvicord lamp had to 
be exchanged, and the peristaltic pump had to be fitted with a new 
rubber hose. It was then necessary to make a new calibration with a 
dilution series of the sucrose-chromate solution as described 
before. This gave 

E = -0.004084 1- 0.555505~ - 0.066611~~ + 0.003116~~ (65) 
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with a mean deviation of 0.37%. The test run with a falling density 
gave the primary data given in the first two columns in Table 3. The 
concentrations corresponding to the observed extinction values 
were calculated by using Eq. (65) and have been introduced into 
the third column. They should be rectilinear with the effluent 
volume. To test that, the following straight line was calculated by a 
least-squares treatment of the data in the first and third columns: 

c = 2.024831 - O.O17793(V, - V) (66) 

Concentrations calculated from this equation are given in the fourth 
column, and the relative deviations between observed and thus 
calculated concentrations are given in the last column. In this case 
the last two readings, which were excluded from the treatment by 
least squares, show a 1% deviation, whereas the rest of the con- 
centration course shows a mean deviation from linearity of only 
0.17%. 

TABLE 2 

Linearity Analysis on a Rising Density Course 

C 

1OOOAc 
v, - v E Interpol. Linear 2.0197 

0.00 0.0000 
4.42 0,0458 

11.77 0.1107 
19.13 0.1772 
26.49 0.2418 
33.85 0.3063 
41.20 0.3696 
48.56 0.4306 
55.92 0.4881 
63.28 0.5452 
70.63 0.6003 
77.99 0.6498 
85.35 0.6968 
92.71 0.7471 

100.07 0.7878 
107.42 0.8327 

110.00 0.8416 

-0.0022 - 
0.0845 
0.2103 
0.3434 
0.4767 
0.6144 
0.7541 
0.8932 
1.0293 
1.1691 
1.3086 
1.4388 
1.5663 
1.7075 
1.8262 
1.9614 

1.9885 

-0.0023 0.1 
0.0789 2.8 
0.2140 -1.7 
0.3493 -2.9 
0.4846 -3.9 
0.6199 -2.7 
0.7550 -0.5 
0.8903 1.4 
1.0256 1.8 
1.1609 4.1 
1.2960 6.2 
1.4313 3.7 
1.5666 -0.1 
1.7042 1.6 
1.8372 -5.4 
1.9723 -5.4 

2.0197 -15.4 
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TABLE 3 

Linearity Analysis on a Falling Density Course 

c 
IOOOAc 

v, - v E Interpol. Linear 2.0092 

0.88 
9.68 

18.48 
27.28 
36.08 
44.88 
53.68 
62.48 
71.28 
80.08 
88.88 
97.68 

106.48 
110.00 

0.8665 
0.8153 
0.7620 
0.7055 
0.6459 
0.5834 
0.5186 
0.4522 
0.3799 
0.3054 
0.2269 
0.1481 

0.0545 
0.0218 

2.0032 
1.8502 
1.6970 
1.5422 
1.3854 
1.2282 
1.0720 
0.9183 
0.7581 
0.5990 
0.4386 
0.2837 

0.1068 
0.0471 

2.0092 
1.8526 
1.6960 
1.5394 
1.3829 
1.2263 
1.0697 
0.9131 
0.7565 
0.6000 
0.4434 
0.2868 

0.1302 
0.0676 

~ 

-3.0 
-1.2 

0.5 
1.4 
1.2 
0.9 
1.1 
2.6 
0.8 

-0.5 
-2.6 
-1.5 

-11.6 
-10.1 

DlSCUSSlON 

This investigation was initiated after discussions between the 
senior author and Dr. 0. Vesterberg, Department of Bacteriology, 
the Karolinska Institute, Stockholm. In his exploration of the iso- 
electric focusing method for proteins in density gradients (6), he 
had, by a skillful combination of qualitative arguments and experi- 
ments, realized that density gradients obtained from a device 
according to Fig. 1 could be much improved by using some sort of 
plunger in the less dense solution. He reported considerable ad- 
vance with a plunger essentially conical in shape. The senior author 
became interested in the problem and decided to deduce the theo- 
retical shape which a plunger should have in order to give a con- 
stant density gradient. For a turned plunger, it turned out that the 
radius has to be a fourth-root function of the height. 

The relatively time-consuming turning of plungers with specifi- 
cally programmed radii raises the question of the magnitude of the 
deviations from linearity that are to be expected when both con- 
tainers have constant cross-sectional areas, that is, when no plungers 
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or cylindrical plungers are used in cylindrical containers. At hydro- 
static equilibrium equal cross sections give rise to a larger volume 
of the less dense solution and comparatively severe deviations from 
linearity, as shown by Fig. 4. The density gradient obtained varies 
as the cube of the density. 

On the other hand, unequal cross sections chosen so as to give 
equal initial volumes at hydrostatic equilibrium give rise to much 
more constant density gradients, as shown by Fig. 5. As a matter of 
fact, the deviation from a straight line is everywhere smaller than 
1.6% of the total density difference, although the density gradient 
goes to infinity toward the end of the flow due to the presence of the 
factor (1 - T ) - O . ~  in Eq. (62). The numerical data underlying Fig. 5 
refer to sucrose solutions in water, density difference 0.2 g/cm3. For 
such solutions the use of equal volumes in unequal cylinders can be 
regarded as a practical possibility for making almost constant 
density gradients. When greater density intervals are involved, the 
arrangement gives density courses that are far from linear. 

Experimental tests of the theory have been limited to plungers 
of the theoretical shape for constant gradients. Disregarding the 
1-1.5% deviations that have been encountered at the end of the 
flow, the density courses obtained have been found to be so accu- 
rately linear that graphs would completely fail to show any devia- 
tions at all. For that reason the deviations from linearity have been 
given in the last columns of Tables 2 and 3 as parts in 1000 of the 
maximum concentrations. The mean deviations amount to 0.2- 
0.3% and fall entirely within the experimental uncertainty. 

Surface tension effects have not been included in the theory. The 
latter can therefore be expected to lose in accuracy and applicability 
when such effects become important. We believe this to be the 
case toward the end of the flow when the menisci begin to touch 
the bottom of the respective containers. This is probably the reason 
for the comparatively large deviations from linearity at the end of 
the flow. 

Increased surface tension effects are also to be expected in mixers 
for very small volumes, e.g., for density gradient runs in small 
centrifuge tubes. The use of plungers must probably be abandoned 
in mixers for small volumes. One will then have to make containers 
of the proper shape or to use unequal cylinders with equal initial 
volumes, giving approximately constant density gradients. 

There is in general an optimum speed for the stirrer, too low a 
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speed causing insufficient mixing and too high a speed giving rise 
to a paraboloid deformation of the liquid surface. We have handled 
this problem in an entirely empirical way. The relatively thick 
stirrer shown in Fig. 6 and used because of its compatibility with 
both types of plungers can be run at a rather high speed without 
causing any difficulties due to swirling. 

Salo and Kouns (7) have described simple equipment for making 
constant density gradients in small volumes (5  ml) of liquid. They 
paid considerable attention to the design of the intercompartment 
duct and preferred to operate with the less dense solution in the 
stirred container (rising density), whereby complete hydrostatic 
equilibrium within the duct was achieved. Much less interest was 
devoted to the hydrostatic balance between chambers, but they 
seem to have attained initial hydrostatic equilibrium more or less 
fortuitously, by the volume occupied by the stirrer and by the added 
volume used to compensate for the volume of the exit tube. In this 
way their procedure becomes closely related to our suggestion of 
using equal volumes of liquid in unequal cylinders. 
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List of Symbols 

A 

C 

i 
P 

T = l /s  = po/p 

s = PIP0 

constant free cross-sectional area in the stirred 
container 
the variable free cross-sectional area in the other 
container 
constant internal cross-sectional area of unstirred 
container with plunger 
(subscript) means “initial” 
variable cross-sectional area of plunger in the un- 
stirred container 
density ratio between unstirred and stirred liquid 
= reciprocal specific gravity as defined below 
density ratio between stirred and unstirred liq- 
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uid= specific gravity of effluent liquid with the 
unstirred liquid as the standard 
volume remaining in the mixer 
reduced volume, dimensionless, running from 
unity to zero 
height of liquid column in the unstirred container 
height of liquid column in the stirred container 
variable density in the stirred container = efflu- 
ent density 
constant density in the unstirred container 
density difference between stirred and unstirred 
container 

V 
v = V/Vi 

x 
y 
p 

po 
Ap = p - po 
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